The fracture toughness of soft tissues.
نویسندگان
چکیده
Fracture toughness is important for any material, but to date there have been few investigations of this mechanical property in soft mammalian tissues. This paper presents new data on porcine muscle tissue and a detailed analysis of all previous work. The conclusion is that, in most cases, fracture toughness has not in fact been measured for these tissues. Reanalysis of the previous work shows that failure of the test specimens generally occurred at the material's ultimate strength, implying that no information about toughness can be obtained from the results. This finding applied to work on cartilage, artificial neocartilage, muscle and the TMJ disc. Our own data, which was also found to be invalid, gave measured fracture toughness values which were highly variable and showed a strong dependence on the crack growth increment. The net-section failure stress and failure energy were relatively constant in large specimens, independent of crack length, whilst for smaller specimens they showed a strong size effect. These findings are explained by the fact that the process zone size, estimated here using the critical distance parameter L, was similar to, or larger than, critical specimen dimensions (crack length and specimen width). Whilst this analysis casts doubt on much of the published literature, a useful finding is that soft tissues are highly tolerant of defects, able to withstand the presence of cracks several millimetres in length without significant loss of strength.
منابع مشابه
Estimation of fracture toughness of liver tissue: experiments and validation.
The mechanical interaction between the surgical tools and the target soft tissue is mainly dictated by the fracture toughness of the tissue in several medical procedures, such as catheter insertion, robotic-guided needle placement, suturing, cutting or tearing, and biopsy. Despite the numerous experimental works on the fracture toughness of hard biomaterials, such as bone and dentin, only a ver...
متن کاملThe Effect of Microstructure on Estimation of the Fracture Toughness (KIC) Rotor Steel Using Charpy Absorbed Energy (CVN)
The proportional relationships between the Charpy absorbed energy (CVN) and the KIC values have been established for a wide variety of steels. Several formulae have been proposed that predict KIC from CVN. The purpose of this study is to investigate, by means of compact testing fracture toughness specimens, the effective role of microstructure for estimation of the fractur...
متن کاملEffect of Rock Fracture Filling on Mode I and II Fracture Toughness
This paper focuses on some fracture toughness tests performed on the pre-cracked Brazilian specimens of rock-like materials. Also the effect of rock fracture filling on the fracture toughness was considered experimentally. Fracture toughness is a key parameter for studying the crack propagation and fragmentation processes in rock structures. Fracture mechanics is an applicable tool to improve ...
متن کاملEffect of Aging on Fracture Toughness of Al6061-Graphite Particulate Composites
This article presents the investigative work conducted on the fracture toughness and microstructure of Al6061-9% graphite particulate composites. The requisite specimens for the fracture toughness testing were compact tension ones prepared using stir casting technique. The Al6061-9% graphite particulate metal matrix composite has been heat treated in the underaged condition. It is observed from...
متن کاملEffect of Thickness on Fracture Toughness of Al6061-Graphite
This research work presents the study on fracture behavior of Al6061 with graphite particulate composite produced by the stir casting technique. The materials selected for the proposed work is Al6061 and graphite particles. Compact tension (CT) specimens were utilized to determine fracture toughness for different thickness of composite. In the present work, optimizing the parameters of the comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 6 شماره
صفحات -
تاریخ انتشار 2012